MGML

Materials Growth & Measurement Laboratory

Petr Král: Physical properties of Ce2Pd2In under external pressure

Seminar on Magnetism
Date: Wednesday, 11 December 2019 14:10 - 15:10

Venue: Ke Karlovu 5, Prague 2


new logo

  

  

We have a pleasure to invite you to attend the joint seminar
of the Department of Condensed Matter Physics (DCMP)
and the Materials Growth and Measurement Laboratory (MGML) http://mgml.eu.

 

Program

 

Physical properties of Ce2Pd2In under external pressure

lecture given by:

Petr Král

Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic

The seminar takes place in the lecture room F2 
of the Faculty of Mathematics and Physics, Ke Karlovu 5, Praha 2
on Wednesday, 11.12. 2019 from 14:10 

Vladimír Sechovský
On behalf of the DCMP and MGML


Abstract 

The physics of rare-earth-based intermetallics is mainly determined by highly correlated 4f-electrons. In some compounds usually localized 4f-electrons states can hybridize with the wave functions of neighboring atoms. The unique way how to directly affect the interatomic distances and thus the hybridization is application of external pressure.

In our study we have focused on the cerium-based compound Ce2Pd2In, which is known to crystallize in the Mo2FeB2-type structure (space group P 4/m b m), in the Shastry-Sutherland lattice consisting of planes formed by Ce-atoms alternated by non-magnetic planes containing other elements. It belongs to the group of Ce2T2In compounds exhibiting well-localized magnetism (Ce2Cu2In, Ce2Au2In, Ce2Pd2In) or valence fluctuations (Ce2Ni2In, Ce2Rh2In) [1,2], depending on the d-band of the transition metal T.

The magnetic ground state of this compound is very sensitive to the off-stoichiometry. The excess of Ce leads to ferromagnetic ground state, while the excess of Pd results in an incommensurate antiferromagnetism with propagation vector k = (0.22, 0, 0). The accurate stoichiometry leads to presence of two magnetic transitions, the compound reaches ordered ferromagnetic ground state through the intermediate antiferromagnetic state [3,4,5].

We present new results of ambient pressure characterization of the high quality Ce2Pd2In single crystal and the magnetic behavior of the compound with respect to the external pressure application. Under hydrostatic pressure up to 3 GPa, antiferromagnetic phase remains to significantly lower temperatures. Extension of the experiment to higher pressure range is needed to estimate total suppression of the ferromagnetic ground state. In frame of another experiment, the uniaxial pressure was applied along the crystallographic c-axis in order to affect directly the anisotropy of the lattice. We found that the saturated magnetization is decreasing with increase of the pressure, while the positions of phase transitions aren’t affected significantly.

References:

[1] D. Kaczorowski, P. Rogl, K. Hiebl, Phys. Rev. B 1996, 54, 9891.
[2] R. Hauser, H. Michor et al., Physica B 1997, 230, 211.
[3] M. Giovannini, H. Michor et al, Phys. Rev. B 2000, 61, 4044
[4] D. Kaczorowski, M. Giovannini et al., Czech. J. Phys. 1996, 46, 2063
[5] M. Klicpera, S. Maskova et al., J. Magn. Magn. Mater. 2016, 404, 250

 

Address
Ke Karlovu 5, 121 16 Prague 2, Czech Republic

 

Map


 

All Dates


  • Wednesday, 11 December 2019 14:10 - 15:10